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Abstract--Slot injection into the flow over a Joukowski aerofoil is considered. A narrow slot is placed 
close to the leading edge and the effect of injection of fluid from this on the boundary layer over the aerofoil 
is examined. In particular it is shown how separation may be delayed and, when cold fluid is injected, how 

the surface downstream from separation may be cooled. 

1. INTRODUCTION 

In this paper we consider two-dimensional, laminar, 
incompressible, boundary-layer flow over an aero- 
dynamic surface. Fluid may be injected from a slot 
into the flow. Recent work on slot injection into the 
flow past a solid surface includes the inviscid studies 
of Fitt  and co-workers [1, 2]. In [1], the fluid is injected 
normal to the boundary and the injected layer of fluid 
is much thicker than any viscous boundary layers that 
may be present. The analysis in [2] extends that of [1] 
to a slot geometry which includes a drop of height 
from the boundary upstream to that downstream, 
thereby allowing oblique injection. Injection into vis- 
cous boundary layers has a long history. Much of the 
work reported relates to the flat-plate boundary layer 
with normal inject:ion. The work of Klemp and Acri- 
vos [3] exemplifies this. The blowing velocity is on the 
boundary-layer scale, O(Re-l/2Uo) where Re is the 
Reynolds number and U0 the free-stream speed. If  the 
variation of  this is as the inverse square root from the 
leading edge, a similarity reduction of the boundary- 
layer equations is available. When blowing on this 
scale is large the boundary layer, thickness 
O(Re-1/2c), where c is a typical length, is blown off 
the plate to the relatively large distance O(Re-1/3c). 
Catherall et al. [4] have shown that if the blowing 
velocity is uniforrn on the boundary-layer scale then, 
even though small, this will lead to a singular behav- 
iour of the solution which they interpret as flow sep- 
aration. For  supersonic flow Smith and Stewartson 
[5, 6] have extended these studies into a regime where 
the blowing velocity is much stronger, namely 
O(Re-3/SUo). In particular, in [5] the injected fluid 
emerges from the flat plate through a slot of width 
O(Re-3/8c). These scales of blowing velocity and slot 
width are chosen in order that the 'triple-deck' theory 
may be employed. This allows for the interaction 
between the boundary layer and the outer inviscid 
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flow, due to this relatively strong blowing, to be 
accommodated. Riley [7, 8] has extended this slot- 
blowing example to incompressible flow, and to cases 
in which the injected fluid emerges at an oblique angle 
to the free stream. These slot-injection studies are 
local, in the sense that they demonstrate how, locally, 
the flow over a flat plate responds to this type of 
injection and helps to promote flow separation. Our 
aim is to demonstrate that oblique injection, when the 
angle between the surface and injected-flow direction 
is small, can energize the flow and delay separation. 
Such injection may also be used to cool the surface 
over which the injected fluid flows. Earlier work on 
this type of film cooling has been surveyed by 
Goldstein [9]. 

Our choice of aerodynamic surface is the classical 
Joukowski aerofoil. This suits our requirements 
admirably. From the point of attachment the pressure 
falls rapidly to a minimum, and then rises mono- 
tonically to the trailing edge. It is not well designed, 
in the sense that flow separation is readily provoked ; 
and even at modest incidence the separation point 
moves to the leading-edge region, immediately down- 
stream from the suction peak. It is in this region that 
we locate our injection slot, in length about 5% of 
chord. Fluid is injected from the slot, with components 
normal and tangential to the surface, on the boun- 
dary-layer scale. As a consequence, although the 
blowing speed may be large, the mass injection rates 
are modest. We demonstrate that this type of injection 
can delay separation to the trailing edge, even when 
in the absence of injected fluid flow separation is close 
to the leading edge. Furthermore, we show that the 
injection of cold fluid from the slot has a significant 
cooling effect on the surface downstream from it. We 
work within a classical boundary-layer framework. 
However, we do analyse the boundary-layer dis- 
placement effect upon the outer flow. This shows that 
the fluid ahead of the slot is, as expected, accelerated. 
But the modification to the flow due to this effect will 
be negligible at high Reynolds numbers. 
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NOMENCLATURE 

a circle radius in z-plane 
c aerofoil chord 
J measure of injection strength 
K circulation 
l injection slot length 
p pressure 
P0 free stream pressure 
Re Reynolds number 
s arc-length on body surface 
T temperature 
Tw wall temperature 
T.~ upstream temperature 
To measure of injected fluid temperature 
u streamwise boundary-layer velocity 
u~ slip velocity at aerofoil 
uj injection profile 
U0 free-stream speed 
v crossflow boundary-layer velocity 
w complex potential 
y boundary-layer normal co-ordinate 
z' = x ' +  iy' complex variable in physical 

plane. 

Greek symbols 
ct angle of incidence 

O~ e effective incidence 
f l  O~ e - -  O~ 

6 width of slot boundary layer 
Re 1/2 

complex variable in transformed 
plane, ¢ + iq 

0 polar angle in z-plane 
2 parameter in Joukowski 

transformation 
# measure of aerofoil thickness 
v kinematic viscosity 
p density 
a Prandtl number 
z wall shear stress 
q5 2 ~ + f l + n - O  

injection angle 
measure of aerofoil camber. 

Subscripts 
i index for streamwise discretization 
j index for cross-stream discretization. 

Superscripts 
r iteration number in numerical process. 

The plan of our paper is as follows. In Section 2 we 
consider the inviscid flow. This includes not only a 
brief description of the classical Joukowski aerofoil, 
but also the modification to the inviscid flow due to 
displacement effects. These are represented by a source 
distribution over the surface of the aerofoil. In Section 
3 the viscous boundary-layer flow, and the simulated 
slot flow are described. This section also includes a 
discussion of the viscous displacement effect. Section 4 
considers the corresponding thermal boundary layer. 
The numerical techniques, based on finite differences, 
that we have used to solve the boundary-layer equa- 
tions are introduced in Section 5, with the results 
therefrom presented in Section 6. We note that our 
hierarchical approach to the calculation of the flow 
field, in which the leading-order inviscid flow is deter- 
mined, followed by the boundary-layer calculation, is 
only justified when the effect of the boundary layer on 
the outer flow is negligible. The displacement effect 
associated with injection is shown to be small provided 
Re >~ 104, and the effect of flow separation on the 
outer flow can only strictly be ignored when sep- 
aration takes place close to the trailing edge, as at the 
higher injection rates. Of course, injection will result 
in inflectional boundary-layer profiles which are likely 
to be unstable at high Reynolds number and our cal- 
culations are limited to laminar flow throughout. 

2. INVISCID FLOWS 

2.1. The basic inviscid f low 
As we have already indicated in Section 1, it is the 

boundary layer on a classical Joukowski aerofoil that 
we seek to influence by injection. We briefly review 
here the construction of the flow past such an aerofoil. 

Consider the circle z ' =  ae  i° in the z ' (=  x '+ iy ' )  
plane. The conformal transformation, where now 
Z r ~ a z ~  

2 2 
~ = z + - -  (1) 

z - # e  i~ 

maps that circle into a Joukowski aerofoil in the 
(=  ~+iq)-plane shown in Fig. 1. In equation (1) 2,/t 
and ~O are constants with 2 = - p c o s  ~9+ (1-pZsinZ 
~0) ~/2, 0 ~< qJ --~ ~n. We note that p provides a measure 
of the thickness of the aerofoil, ~9 a measure of its 
camber and the point z = pe-i~+2 is a singular point 
of the mapping that corresponds to the sharp trailing 
edge of the aerofoil. 

Consider next a uniform flow, speed U0, past the 
circular cylinder, inclined at angle ¢ to the x axis, and 
suppose that there is circulation K about the cylinder. 
The circulation is chosen such that z = # e - ~ + 2  = 
e -~a is a stagnation point. This corresponds to smooth 
flow from the trailing edge of the aerofoil, and results 
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Fig. 1. Definition sketch. A Joukowski aerofoil with/~ = 0.1, 
~, = 0.68. The angles ct, a~ are the incidence and effective 
incidence respectively. A denotes the point of attachment ; a, 

b the ends of the slot. 

2.2. The perturbed inviscid f l o w  
The inviscid flow outside the boundary  layer, dis- 

cussed above, will be modified by both the injected 
fluid and the boundary-layer displacement effect. 
These are discussed in the next section. Both effects 
are assumed to be small, and can be represented as 
sources distributed over the surface of the aerofoil. 
F rom the source distribution it is possible to estimate 
the increment in the inviscid slip velocity at the 
surface. It is convenient, for our purposes, to evaluate 
this in the z plane. Denoting the increment by Auo we 
have 

f~ So sin (t- q~) 
Au~ = - ~ 1 --cos (t-~b) d t (6) 

where So represents the distributed source and e is a 
measure of its strength to which we return below. Our 
hierarchical approach to the problem under con- 
sideration assumes that Auo << 1. 

in K = - 4n sin (c< + fl). Since the lift L on the aerofoil 
is proportional to K we have L = 0 when c< = - f l ,  
and this leads in turn to the definition of an effective 
incidence ~o = c< + ft. 

The complex potential for the flow in the z plane is, 
in dimensionless form with U0 as a scale for velocity, 

W(Z) = ze - iaq -e ia / z+  {e i(ct+~) --e -i(a+t~)} logz. (2) 

From this complex potential, and (1), we have the 
complex velocity in the ~ plane given as 

dw (z--#e-i¢)2{z+ei(2~+P)} e is 

d ~ =  z2 (z_hie  i~, + 2) (3) 

We see immediately that the stagnation point on the 
aerofoil is located at the point corresponding to 
z = - e  i(2~+a), or 0 = 2 ~ + / 3 + n .  For our boundary-  
layer calculation, described in Section 3 below, it is 
convenient to take: this stagnation point as the origin. 
With ~b measured from this point we have 
q5 = 2 ~ t + f l + n - O  The slip velocity at the surface of 
the aerofoil, which provides the outer boundary  con- 
dition for our boundary-layer calculation, is obtained 
from Idw/d~[:=eo 'which, when expressed in terms of 
the new co-ordinate ~b, gives 

Ue(~ ) , 1 = 2 slniq5 

[2+2cos  (2~+2fl-qS)  + 2  2 

- 2,~{cos (2~ + / 3 -  ~) + cos/3}1 
(4) 

[2 + 2 cos (2ct + 2 f l -  qS) + 422 

- 42{cos (2~ + f l -  q~) +cos/3}] '/2 

From Bernoulli 's ,equation the surface pressure, made 
1 2 dimensionless with ~ p Uo, where p is the fluid density, 

is given from 

P--Po = 1 - -u  2 (5) 

where P0 is the dimensionless free-stream pressure. 

3. T H E  V I S C O U S  B O U N D A R Y  L A Y E R  

We define a Reynolds number,  based on the aerofoil 
chord c, as Re = Uoc/v where v is the kinematic vis- 
cosity of the fluid. We work with boundary-layer co- 
ordinates (s, y), where s is arc-length measured along 
the aerofoil surface and y is a scaled co-ordinate nor- 
mal to it, such that if n is a normal co-ordinate then 
y = Re-U2r/. The corresponding velocity components 
are (u, v) where the normal component  also results 
from scaling with Re ~/2. With this co-ordinate system 
the dimensionless boundary-layer equations may be 
written as, 

~u ~v l (7a,b) 
c~2u 

au Ou duo + YfiY~ | . +Vyyy=UO¥ 
.J 

where uo is given by (4), in terms of the angle ~b. The 
relationship between s and q~ is 

f0S [ ( d ~  2 (d~])211/2 
s = L\d4, j  + ~ dq5 (8) 

where (~, q) are the real and imaginary parts respec- 
tively of ~ in equation (1), and the integrand of (8) is 
evaluated at the circular cylinder z = e ~° in the z plane. 
When discretizing (7), for computational  purposes, 
we have not  used uniform step lengths bs, rather we 
have taken equal increments b~b in qS, from which bs 
follows according to (8). The advantages of this are 
first that it proves a convenient way of increasing the 
density of grid points in the regions of rapid change 
and second, equal intervals of ~b are more convenient 
for evaluating the integral in (6), treated as a Cauchy 
principal value integral. 

The boundary  conditions for (7) require that 
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u--* ue as y ~ oo,s > O~ 

u = 0  at s = 0 , y ~ > 0  J (9a,b) 

together with conditions at y = 0. These latter con- 
ditions must include a simulation of  the injected fluid, 
from a slot, into the boundary layer. If  we define 

uj = 12{1 - t a n h  [ ( I s - s0 l - I ) /63}  (10) 

then we write, at y = 0, s > 0 

u = Juj cos ;Q 
(1 la,b) ( 

V : J ~ / j  sin Z.) 

Equations (10) and (11) represent a jet issuing from a 
slot, at angle • = tan- ' (v /u)  to the boundary;  note 
that this is small on account of  the boundary-layer 
scaling on v. In (10), (11), So represents the centre of  
the slot, I is a measure of  its length, and 6, assumed 
small, is a measure of  the thickness of  the boundary 
layers which flank what is essentially a ' top hat '  
profile, the constant J is a measure of  the strength of  
injection from the slot. 

Since a consequence of  our high-Reynolds number 
assumption is that the pressure is constant across the 
boundary layer, the reservoir pressure, Pr, required to 
maintain (11) is given b y p r - P 0  = 1 + j 2  __u20, where 
Ueso is the free-stream speed at the slot location So. 

As we have remarked in Section 2, the displacement 
effect, due to the injected fluid and viscous effects, will 
modify the outer inviscid flow according to equation 
(6), and this we now estimate. F rom equation (7) we 
have 

duo ~ If' v + y ~  s = vw+ ~s ( u e - u )  dy. (12) 

In (12) Vw is the normal velocity at the boundary, 
defined by (1 lb). In the absence of  viscosity and injec- 
tion the right-hand side of  (12) vanishes and so may 
be identified as the displacement effect. Evaluating at 
y = oo gives, as the required displacement velocity 

Va = Vw + dss (ue - u) dy (13) 

and so we complete (6) by setting ~ = R e -  ,/2, So = ~d, 
where gd is the corresponding displacement velocity in 
the z plane. 

4. THE  T H E R M A L  B O U N D A R Y  LAYER 

We assume that temperature differences are not  
sufficiently large as to significantly affect the physical 
properties of  the fluid such as density, viscosity and 
thermal conductivity. In that case equations (7) are 
supplemented by 

OT dT 1 (~2T 
- ( 1 4 )  U~s+VOy a0y2 

where a = vffc is the Prandtl number, with ~c the ther- 
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Fig. 2. The injection profile us of equation (10) with 
So = 0.272, l = 0.075 and 6 -~ = 128. Arc length is measured 

from A. 

mal diffusivity, and the dimensionless temperature T 
is defined by 

T ' =  To~+(Tw--To~)T (15) 

where T '  is the dimensional temperature, Too the ambi- 
ent temperature, and Tw a measure of  the boundary 
temperature. Clearly we require 

T ~ 0  as y ~ o o ,  s > 0 .  (16) 

The temperature distribution at s = 0 has to be con- 
structed in the manner described in the next section. 
There remains the condition to be imposed at y = 0. 

We envisage two situations. C o m m o n  features of  
these are that ahead of  the injection slot the wall 
temperature is a constant, Tw, so that T = 1 at y = 0, 
and the injected fluid has a lower temperature. The 
two cases differ in that beyond the slot we have either 
(i) the boundary temperature is again maintained at 
a constant value with T = 1 at y = 0 or (ii) the boun- 
dary is thermally insulated with OT/Oy = 0 at y = 0. 
In case (i) a measure of  the cooling effect is the amount  
of  heat added that is necessary to maintain the boun- 
dary temperature and in case (ii) the temperature of  
the boundary itself is measured. For  case (i) we take, 
a t y  = 0 

T =  To[1 - tanh  { ( I S - S o [ - l ) / 6 } ] +  l (17) 

whilst for case (ii) we take 

T =  To[1--tanh {(so--s - - l ) /6}]+ l s ~ sj'] 

OT/Oy = S(s)  OT/Oyl . . . .  sj  <~ s <<. sb 

O T / O y = O  s > s~. 

(18) 

In (18) Sb is the notional end of  the slot, defined as the 
point at which uj = 0.01 and sj the point at which 
uj = 0.9 immediately upstream, see Fig. 2. S(s) is a 
suitably chosen smoothing function with 0 ~< S ~< 1. 
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5. NUMERICAL PROCEDURES 

In this section we outline the numerical procedures 
we have employed to obtain the solutions that are 
described in Section 6 below. We begin with the non-  
linear system (7), together with the boundary  con- 
ditions (9) and (11). First it is necessary to consider 
the nature of the solation close to s = 0. From (4) and 
(8) we find, after some manipulat ion,  that for s << 1 

u~ = Bs  + O ( s  2) (19) 

where 

B = h 2 {h+ 322 - 22[cos (2ct + fl) +cos  fl]} - 1/2 
/ 

× {6h -6+222 [1  + 4 c o s  2(~+fl)] [. 

+ 2  cos 4(ct+fl) - 4 c o s  2(ct+fl) / 

- 42[cos (20', + 3fl) + cos (4c~ + 3fl)]} -1/2 j 

(20) 

with 

h = 2 + 2 cos 2(c~ + fl) + 22 - 22[cos (2~ + 13) + cos fl]. 

If we then write 

u = B s f ( y ) + O ( s  2) v = B y ( y ) + O ( s )  (21) 

the equations satisfied by f i n d  # are, from (7), 

with B - ' f " - q f ' - f 2 + l = O  f + 9 ' = O 1 }  
f (O)  = g(O) = 0 f ( o o )  = . 

(22) 

The method of solution of (22) mirrors what we have 
used when advancing the solution of (7) step by step, 
and we do not  describe it in detail. Rather, we con- 
centrate on the solution of (7) and the technique for 
advancing it in the direction of increasing s, in either 
direction, from the stagnation point s = 0. The finite- 
difference mesh we introduce is uniform in the y direc- 
tion, with step length 6y such that yj = j f y ,  j = O, 
1 . . . .  , n + 1 with the assumed edge of the boundary  
layer at y~ = ( n +  l ) r y .  In the s direction, as we have 
already indicated, the step-length is non-uniform such 
that the mesh is finer in regions where flow quantities 
change more rapidly than elsewhere. If  6s~ = Sg+l-s~ 
then we have sl = "~-~-~ 6s~. In advancing the solution 
from si to &+~, that is from station i to i +  1 we dis- 
cretize (7) using central differences. The solution is 
known at si, and it is the 2n quantities u~+~j, v~+~j, 
j = 1 . . . .  ,n  that are to be determined as si+l. The 
discretized equations (7) provide 2n non-linear equa- 
tions to solve for these quantities where, in these equa- 
tions, use of the conditions (9) and (11) has been made 
to eliminate u~+~,0, v~+ ~,0 and u~+ ~,,+~. At each station 
an initial estimate of the flow quantities is made either 
by extrapolation from the two previous stations or, at 
s = 6so (So -- 0), by use of (21). Since the discretized 
forms of  (7) are non-linear the solution is completed 
iteratively. So, if X represents the solution vector with 
elements u~+ ~j, v~+ ~j and X r is the rth estimate of it, 

and if F is a vector whose 2n components are the 
discretized form of (7), then X satisfies 

O = F(X) ~ F(X r) ÷ a a ' ( X - X  r) (23) 

where Ja  is the Jacobian matrix of the system evalu- 
ated at X r, that is the matrix with elements 8FI/BXj in 
its ith row and j th  column. Equation (23) forms the 
basis of our iterative method with 

xr+ 1 = X r _  Ja  1 . F(X r) 

or 

Ja" fiX r = - F(X r) (24) 

which is solved iteratively until  I6Xrl is less than some 
prescribed tolerance. The solution procedure for (24) 
is implemented as follows. The components of X are 
defined as 

X2j-1 = ui+ w } (25) 
X2) = vi+ l j  j =  1 . . . .  ,n 

with the corresponding components of F given from 
the discretized versions of equations (7b) and (7a), 
respectively. The Jacobian matrix is then of block tri- 
diagonal form with elements that are themselves 2 x 2 
matrices. The matrix Ja  is then decomposed as Ja  = L 
U where L is a lower unitary block bi-diagonal matrix, 
and U is an upper block bi-diagonal matrix. The 
elements of both L and U are again 2 × 2 matrices. 
The advantages of this decomposition lie in the more 
efficient solution procedure for (24) as follows. First 
define 

Y = L-1F(Xr)  t 
so that 6X ~ is obtained from (26) 

UrX r = _ y .  

This two-step approach to the itcrative solution of 
(24) proves efficient and reliable in practice. 

The step-by-step solution of (7), as described above, 
continues until  the trailing edge of the aerofoil is 
reached (the solution, in fact, never goes beyond the 
penultimate station since, although the velocity at the 
trailing edge of a Joukowski aerofoil is non-zero and 
finite, the pressure gradient is infinite) or the flow 
separates. Separation is characterized by the vanishing 
of the shear stress z = c3u/Syly=o. Ifsp is the separation 
point then it is known that ~ varies as (Sp-S) ~'2 as 
that point is approached. The solution method fails 
in response to this singular behaviour. If sin, s,,_ ~ are 
the last two stations at which a converged solution is 
obtained, then sp is estimated from 

( S m - - S m _ I ) T  2 
Sp = S m -~- T2 2 (27) 

m--I --'Gin 

With the velocity field determined, the solution of 
(14) for T is straightforward. For the solution at the 
initial line s = 0 we write 

T = Tx(y) + O(s) (28) 
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Fig. 3. The position of separation as a function of effective 
incidence ~e. Here arc length so is measured from the point 

of attachment at ~o = 0. 

so that with u, v given from (21) the equation for TI 
is 

t~Ti 1 ~2 Tl 
Bg (29) cTy a ay 2 

which is to be solved subject to TI(0) = 1, T~(~) = 0. 
Again, the method of  solution mirrors that for the 
step-by-step solution which we now describe. With 
the same mesh as for the velocity field, and with (14) 
discretized using central differences, our task is to 
find the values of  Ti+ i j, j = 1 . . . .  ,n. The discretized 
equation leads to the following set of  algebraic equa- 
tions 

ajTi+Jj+,  + b ; T i + l j + c ; T i + a j  1 = ~ J = 1 . . . . .  n 

(30) 

where the coefficients aj, bj, cj, and the quantities ~ are 
all known. When the boundary conditions (16) and 
(17) or (18) are used Ti+~,,+l and T~+j.0 in (30) are 
determined which leaves n equations to be solved for 
the n unknowns Ti+w,  j = 1 . . . .  ,n .  The matrix of  
coefficients in (30) is of  tri-diagonal form, and the 
solution is easily obtained. 

6. RESULTS 

The aerofoil on which our calculations are based is 
a cambered, 10% thick aerofoil which corresponds 
to It = 0.1, ~k = 0.68 in equation (1). This aerofoil is 
shown in Fig. 1 ; for it the effective angle of  incidence 
is ~o = ~+3 .6  °. 

We first calculate the boundary layer on the upper 
surface of  the aerofoil f rom equations (7), with Ue 
given from (4) and (8) and estimate the position of  
the separation point, from the numerical solution, 
using equation (27). The separation point so cal- 
culated is shown in Fig. 3, for values of  ao increasing 

2.0 
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f 
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033 I I I I I 1 I I 
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S 

Fig. 4. The inviscid slip velocity uo on the upper (u) and lower 
(l) surfaces of the aerofoil shown in Fig. 1 for a = 6.3 °. Arc 

length is measured from A. 

from zero, as a function of  arc length along the surface 
measured from the at tachment point at ~ = 0. The 
position of the attachment point itself, of  course, varies 
slightly with incidence. Separation at no lift is just 
beyond mid-chord and, as may be expected, moves 
rapidly forward as incidence increases until for 
~o = 10 ° the flow remains attached for only a short 
distance on the upper surface. 

To investigate the effect of  slot injection on sep- 
aration we take the relatively high incidence of  

= 6.3 °, which corresponds to an effective incidence 
~o = 9.9 °. The inviscid slip velocities on both the upper 
and lower surfaces, with corresponding pressure dis- 
tributions, are shown in Figs. 4 and 5 respectively. We 
remark that the arc length from attachment, denoted 
by A in Fig. 1, to the trailing edge of  the aerofoil is 
greater on the upper than the lower surface. We see 
that on the upper surface of  the aerofoil an initial 
favourable pressure gradient rapidly gives way to a 
severe adverse gradient which the boundary layer is 
unable to sustain, with separation taking place at 
s = 0.285. To counter this adverse gradient we centre 
our injection slot at s = 0.272. Thus, in the definition 

o--1 

-2 

I I I I I ] ] I 
0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 

S 

Fig. 5. The pressure distributionp on the upper (u) and lower 
(l) surfaces of the aerofoil shown in Fig. 1 for ~ = 6.3 °. Arc 

length is measured from A. 
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Fig. 6. Variation of ~:he position of separation so with the 
injection angle Z, for various values of J. Arc length is mea- 
sured from the point: of attachment A. The edges of the 
slot are at s= = 0.18 .denoted as a, s~ = 0.36 denoted as b. 
Separation occurs at so = 0.285 when J = 0. The upper sur- 
face of the aerofoil measures 3.869 units of arc length, and 

the trailing edge is shown as t. 

of uj in equation (10), we take So = 0.272, l = 0.075, 
6 -I  = 128. This essentially ' top-hat '  injection profile 
is shown in Fig. 2. We define the edges of our simu- 
lated slot to be the points at which uj --- 0.01, so that 
in this particular case the slot is in the region 
0.18 ~< s ~< 0.36. Tile edges of the slot are indicated in 
Fig. 1. 

To assess the effi:cts of injection we note from (11) 
that two parameters are available to us, namely the 
magnitude, or strength, of  the injection J, and the 
angle Z at which the injected fluid initially penetrates 
the boundary  layer. Note that although we may vary 

by an O(1) amount ,  the boundary-layer scaling that 
is implicit in the definition of Z means that in all cases 
we are injecting fluid close to the boundary.  In Fig. 6 
we show the effect of slot-blowing on the separation 
position. For  a fixed value of ~ we see, as perhaps 
expected, that separation is delayed as J increases. 
Somewhat unexpected is that for a given value of 
J ~> 4 the separation position does not  vary mono-  
tonically with X. For  J ~> 10 the opt imum injection 
angle is approximately 36 ° . At that angle, when 
J ~> 18, separation is postponed to the trailing edge. 
The boundary  layer on the lower surface is unaffected 
by injection into the boundary  layer on the upper 
surface, and remains attached at this incidence. As a 
consequence we find that by blowing sufficiently hard 
it is possible to maintain a wholly attached flow at 
this incidence. Whilst the injection strength J may 
appear to be large for this to be so, the mass injection 
to achieve this is relatively modest, O(Re-l/2j), for 
high Reynolds numbers. 

As we have already indicated in Section 2, the dis- 
placement effect associated with injection and vis- 
cosity may lead to a significant modification of the 
outer, inviscid, flow. For  the case J = 20, ~ = 36 °, we 
show in Fig. 7 the displacement velocity defined by 
equation (13). In all of  the above calculations the edge 
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Fig. 7. The viscous displacement velocity in the neigh- 
bourhood of the injection slot for the case J = 20, X = 36 °. 

of  the boundary  layer, y = ~ ,  was represented by 
y~ = 10.0, and 1001 points were used to resolve the 
boundary  layer, corresponding to an increment 
6y = 10 -2. With the displacement velocity given, we 
may calculate the change in the inviscid slip velocity 
at the surface that this brings about.  To do this we 
revert to the z plane, and equation (6). The integrand 
in this equation is tabulated at 1600 equally spaced 
points such that 6q~ = ~/800. Such fine resolution 
enables us to evaluate the Cauchy principal value inte- 
gral in (6) quite accurately using the trapezium rule. 
In the ( plane the corresponding tabular points are 
not  equally spaced in s. On both the upper and lower 
surfaces of the aerofoil we have, in the mid-section 
~s ~ 7 × 10 -3, whilst in the nose region 
~s ~ 1.05 × 10 -3. High resolution close to the leading 
edge ensures that all flow properties are well resolved. 
Returning to (6) we show in Fig. 8 the quantity 
Rel/2Aue we have calculated, where Auc is the 
increment in the slip velocity on the aerofoil, as a 
function of arc length. This quantity peaks sharply 
just  ahead of the slot, which may be expected as the 
flow anticipates the injection of fluid. We see from 
Fig. 8 that higher-order effects will be unimportant  
for Re >~ 104. 
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Fig. 8. The increment of inviscid slip velocity which cor- 
responds to the displacement velocity of Fig. 7. 
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Fig. 9. The heat transfer parameter, OT/OYly=o, downstream 
from the slot, for slot temperature T = 1, ' + ' ,  and for slot 

temperature T = - 1, ' - ' .  
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Fig. 10. The ratio of the heat transfer parameters shown in 
Fig. 9. 

We next consider the heat transfer characteristics 
associated with injection when the injected fluid has a 
temperature different from both the ambient tem- 
perature, and the constant boundary temperature Tw 
ahead of  the slot. For  comparison purposes we also 
consider the case when the injected fluid has tem- 
perature Tw. The two situations we consider are out- 
lined in Section 4. In case (i), to which (17) refers, the 
boundary temperature reverts to its value ahead of  
the slot, whilst in case (ii) we have an adiabatic wall 
condition as in equation (18). We set the Prandtl num- 
ber tr = 0.7 and maintain the blowing strength as 
J = 20, so that the boundary layer remains attached. 

We consider, first, case (i) for which the boundary 
condition (17) is appropriate. In (17) we take To = 0 
initially so that the injected fluid has the same tem- 
perature, T = 1, as the boundary temperature. In that 
case a layer of  fluid at wall temperature is introduced 
over the surface of  the aerofoil. As a consequence 
the heat transfer from the surface, proport ional  to 
-~T/Oy, is relatively small, as is shown in Fig. 9. We 
next take To = - 1 in (17) in which case the injected 
fluid has temperature T = - 1, much cooler than the 
ambient or wall temperatures. Now a layer of  cold 
fluid is introduced over the surface downstream from 
the slot. The effect of  this is a much larger heat transfer 
to the fluid, from the aerofoil surface. This is also 
shown in Fig. 9. We may interpret the heat transfer in 
this case as a measure of  the heat that must be supplied 
to maintain a uniform surface temperature or, alter- 
natively, as a measure of  the cooling effect associated 
with the injection of  cooler fluid. This is emphasized 
in Fig. 10 where, from the results shown in Fig. 9, we 
demonstrate the effectiveness of  injecting cold fluid by 
making a direct comparison with the case when the 
injected fluid is at the boundary temperature. 

We next consider case (ii) with the boundary con- 
ditions (18). In (18) we have taken the smoothing 
function as S(s)= e x p [ - 2 0 0 ( s - s ; ) ] .  As with case 
(i) we carry out  calculations with both To = 0 and 
To = - 1. In the first of  these the temperature o f  the 

injected fluid, T = 1, is again that of  the boundary 
temperature ahead of  the slot, whilst for the second 
the injected fluid is cooled to T = - 1 .  We denote 
the subsequent temperature distributions for s > Sb by 
T+(y) and T-(y)  respectively. An important  feature 
to note is the following. At  the injection rate J = 20 
that we have adopted, the temperature distribution at 
s = Sb is almost independent of  conditions ahead of  
the slot so that T÷(y) ~ - T-(y)  at s = Sb. This is 
demonstrated in Fig. 11. In this case, with the same 
homogeneous boundary conditions downstream from 
the slot, it follows that T ÷ (y) ~ - T -  (y) for all s > sb. 
For  the adiabatic wall condition, when s > Sb, a direct 
measure of  the boundary cooling is the temperature 
of  the boundary itself, T(0). We show in Fig. 12 the 
distributions T ÷ (0) and T-(0) ,  and we note the sub- 
stantial cooling of  the boundary in the latter case. We 
see from Fig. 12 that indeed T÷(0) ~ - T - ( 0 )  and 
this is further emphasized in Fig. 13 where these quan- 
tities are compared directly. On this evidence we may 
infer the useful result that the boundary temperature 
in s > Sb may be calculated, to a good approximation, 
from T ÷ as (2T0+ 1)T+(0). 
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Fig. 11. Temperature distributions at the commencement of 
the slot s = s~, (a) where T+(y) = T-(y), and at the end 

s = sb where -T+(y)  is denoted by (b), T-(y) by (c). 
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Fig. 12. The wall temperature, T -+ [y=0 downstream from the 
slot, for slot temperature T = 1,' + ', and for slot temperature 

T =  - 1 , ' - ' .  

7. CONCLUSIONS 
In this paper we have demonstrated that laminar 

flow separation on an aerofoil, which at sufficiently 
high incidence will be close to the leading edge, may 
be delayed to the trailing edge if fluid is injected from 
a slot close to the leading edge. For  this to be achieved 
the blowing velocity has to be sufficiently high, 
al though the mass injection rate is only modest. If  the 
injected fluid is cooled, then we have shown that a 
significant cooling ,of the aerofoil itself is achieved. 
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Fig. 13. The ratio of the wall temperatures shown in Fig. 12. 
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